
	Project: Design C	of a Surface W	Job Ref.			
GEODOMISI Ltd Dr. Costas Sachpazis	Section	Civil & Geotech	Sheet no./rev. 1			
Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures.	Calc. by Dr.C.Sachpazis	Date 10/11/2013	Chk'd by	Date	App'd by	Date

DESIGN OF A SURFACE WATER DRAIN

Drain design details

Design flow rate;

Length of the drain;

Fall along length of drain;

Gradient of drain;

Minimum flow velocity;

Minimum pipe diameter;

Surface roughness;

Mean hydraulic depth factor;

Kinematic viscosity of fluid;

Using the Chezy equation

Constant;

Diameter of pipe required;

Nearest pipe diameter;

Flow velocity using Chezy;

 $Q_{design} = 5.00 \text{ m}^3/\text{s}$

L = **250.0** m

h = 25.0 m

i = h / L = 0.100; (1 in 10)

 $V_{min} = 0.750 \text{ m/s}$

D_{min} = **200** mm

 $k_s = 0.6 \text{ mm}$

m = **0.25**

 $v = 1.31 \times 10^{-6} \text{ m}^2/\text{s}$

c = 56

D = $((Q_{design}^2 \times 16) / (\pi^2 \times m \times c^2 \times i \times 1 \text{m/s}^2))^{0.2}$ = 876 mm

 D_{chezy} = 900 mm

 $V_{chezy} = c \times \sqrt{(m \times D_{chezy} \times i \times 1m/s^2)} = 8.400 \text{ m/s}$

707	Project: Design of a Surface Water Drain				Job Ref.	
GEODOMISI Ltd Dr. Costas Sachpazis	Section Civil & Geotechnical Engineering				Sheet no./rev. 1	
Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures.	Calc. by Dr.C.Sachpazis	Date 10/11/2013	Chk'd by	Date	App'd by	Date

Using the Escritt equation

Diameter of pipe required; $D = (Q_{design} \times 1000 \times \sqrt{(1/i)} / 0.00035 \text{ m}^3/\text{s})^{0.382} \times 1 \text{mm} =$

840 mm

Nearest pipe diameter; $D_{escritt} = 900 \text{ mm}$

Flow velocity using Escritt; $V_{escritt} = 26.738 \times (D_{escritt} / 1mm)^{0.62} \times 1 \text{ m/s } / (\sqrt{(1/i)} \times 60)$

= 9.563 m/s

Using the Colebrook-White Equation for pipe running full and partially full

Design pipe diameter; $D_{design} = max(D_{chezy}, D_{escritt}, D_{min}) = 900 \text{ mm}$

Constant; $Z = \sqrt{(2 \times (g_{acc} / 1 \text{m/s}^2) \times (D_{design} / 1000 \text{mm}) \times i)} = 1.329$

Flow velocity; $V_{full} = -$

 $2\times Z\times log((k_s/(3.7\times D_{design}))+((2.51\times \nu)/(D_{design}\times Z\times 1m/s)))\times 1m/s$

 V_{full} = **9.932** m/s

Flow rate running full; $Q_{full} = V_{full} \times \pi \times D_{design}^{2} / 4 = 6.32 \text{ m}^{3}/\text{s}$

PASS - Maximum flow rate is greater than design flow rate

From Hydraulics Research Tables 35 and 36

Depth as proportion of D; x = 0.673

Flow velocity at design flow rate; $V_{design} = 10.986 \text{ m/s}$

PASS - Design velocity is greater than 0.750 m/s