

GEODOMISI Ltd. - Dr. Costas Sachpazis Civil \& Geotechnical Engineering Consulting Company for

Project: Gabion Retaining Wall Analysis \& Design, In accordance with BS8002:1994.				Job Ref.	
Section Civil \& Geotechnical Engineering				Sheet no./rev. 1	
Calc. by Dr. C. Sachpazis	$\begin{array}{\|l} \hline \text { Date } \\ 15 / 04 / 2014 \end{array}$	Chk'd by	Date	App'd by	Date

GABION RETAINING WALL ANALYSIS AND DESIGN (BS8002:1994)

Wall geometry
Width of gabion 1;
Height of gabion 1 ;
$\mathrm{w}_{1}=2700 \mathrm{~mm}$

Width of gabion 2;
$h_{1}=700 \mathrm{~mm}$
$\mathrm{w}_{2}=\mathbf{2 3 0 0} \mathrm{mm}$
$h_{2}=700 \mathrm{~mm}$
$\mathrm{s}_{2}=0 \mathrm{~mm}$
Step to front face between 1 and 2;
Width of gabion 3 ;
$\mathrm{w}_{3}=2000 \mathrm{~mm}$
Height of gabion 3;
Step to front face between 2 and 3;
$h_{3}=\mathbf{6 0 0} \mathrm{mm}$
$\mathrm{s}_{3}=0 \mathrm{~mm}$

GEODOMISI Ltd. - Dr. Costas Sachpazis Civil \& Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering \& Retaining Structures.
Tel. : (+30) 210 5238127, 2105711263 - Fax. : + 302105711461 - Mobile: (+30)
6936425722 \& (+44) 7585939944 , costas@ sachpazis. info

Project: Gabion Retaining Wall Analysis \& Design, In accordance with BS8002:1994.				Job Ref.	
SectionCivil \& Geotechnical Engineering				She	
Calc. by Dr. C. Sachpazis	$\begin{aligned} & \text { Date } \\ & 15 / 04 / 2014 \end{aligned}$	Chk'd by	Date	App'd by	Date

Wall inclination;

Wall fill

Gabion fill unit weight;

Centre of gravity

Horizontal distance to centre of gravity gabion 1;
Horizontal distance to centre of gravity gabion 2 ;
Horizontal distance to centre of gravity gabion 3;
Vertical distance to centre of gravity gabion 1 ;
Vertical distance to centre of gravity gabion 2;
Vertical distance to centre of gravity gabion 3;
Weight of gabion 1 ;
Weight of gabion 2;
Weight of gabion 3;
Weight of entire gabion;
Horiz distance to centre of gravity entire gabion;
1192 mm
Vert distance to centre of gravity entire gabion;
934 mm
Correcting for wall inclination horiz dist;
Vertical change in height due to wall inclination; $\sin (\varepsilon))=\mathbf{1 8 2} \mathbf{~ m m}$
$\gamma_{\mathrm{d}}=15 \mathrm{kN} / \mathrm{m}^{3}$
$\mathrm{x}_{\mathrm{g} 1}=\mathrm{w}_{1} / 2=\mathbf{1 3 5 0} \mathbf{m m}$
$\mathrm{x}_{\mathrm{g} 2}=\mathrm{w}_{2} / 2+\mathrm{s}_{2}=1150 \mathrm{~mm}$
$\mathrm{x}_{\mathrm{g} 3}=\mathrm{w}_{3} / 2+\mathrm{s}_{2}+\mathrm{s}_{3}=1000 \mathrm{~mm}$
$\mathrm{y}_{\mathrm{g} 1}=\mathrm{h}_{1} / 2=350 \mathrm{~mm}$
$\mathrm{y}_{\mathrm{g} 2}=\mathrm{h}_{2} / 2+\mathrm{h}_{1}=1050 \mathrm{~mm}$
$\mathrm{y}_{\mathrm{g} 3}=\mathrm{h}_{3} / 2+\mathrm{h}_{1}+\mathrm{h}_{2}=\mathbf{1 7 0 0} \mathbf{m m}$
$\mathrm{W}_{\mathrm{g} 1}=\gamma_{\mathrm{d}} \times \mathrm{W}_{1} \times \mathrm{h}_{1}=\mathbf{2 8 . 4} \mathbf{~ k N} / \mathrm{m}$
$\mathrm{W}_{\mathrm{g} 2}=\gamma_{\mathrm{d}} \times \mathrm{W}_{2} \times \mathrm{h}_{2}=\mathbf{2 4 . 2} \mathrm{kN} / \mathrm{m}$
$W_{\mathrm{g} 3}=\gamma_{\mathrm{d}} \times \mathrm{W}_{3} \times \mathrm{h}_{3}=18.0 \mathrm{kN} / \mathrm{m}$
$\mathrm{W}_{\mathrm{g}}=\mathrm{W}_{\mathrm{g} 1}+\mathrm{W}_{\mathrm{g} 2}+\mathrm{W}_{\mathrm{g} 3}=70.5 \mathrm{kN} / \mathrm{m}$
$\mathrm{x}_{\mathrm{g}}=\left(\left(\mathrm{W}_{\mathrm{g} 1} \times \mathrm{x}_{\mathrm{g} 1}\right)+\left(\mathrm{W}_{\mathrm{g} 2} \times \mathrm{x}_{\mathrm{g} 2}\right)+\left(\mathrm{W}_{\mathrm{g} 3} \times \mathrm{x}_{\mathrm{g} 3}\right)\right) / \mathrm{W}_{\mathrm{g}}=$
$\mathrm{y}_{\mathrm{g}}=\left(\left(\mathrm{W}_{\mathrm{g} 1} \times \mathrm{y}_{\mathrm{g} 1}\right)+\left(\mathrm{W}_{\mathrm{g} 2} \times \mathrm{y}_{\mathrm{g} 2}\right)+\left(\mathrm{W}_{\mathrm{g} 3} \times \mathrm{y}_{\mathrm{g} 3}\right)\right) / \mathrm{W}_{\mathrm{g}}=$
$\mathrm{X}_{\mathrm{g}}=\mathrm{x}_{\mathrm{g}} \times \cos (\varepsilon)+\mathrm{y}_{\mathrm{g}} \times \sin (\varepsilon)=1269 \mathrm{~mm}$
$\mathrm{H}_{\mathrm{f}}=\mathrm{y}_{\mathrm{g} 3}+\mathrm{h}_{3} / 2-\left(\left(\mathrm{y}_{\mathrm{g} 3}+\mathrm{h}_{3} / 2\right) \times \cos (\varepsilon)-\left(\mathrm{x}_{\mathrm{g} 3}+\mathrm{w}_{3} / 2\right) \times\right.$

Calculate effective height of wall

Effective height of wall;
Height of wall from toe to front edge of top gabion;
$=1992 \mathrm{~mm}$

Calculate the angle of rear plane of wall

Effective angle of rear plane of wall;
75.7 deg

Calculate the effective face angle

Effective face angle;

Soil parameters

Slope of retained soil;
Mobilization factor;
Internal angle of friction for retained soil;
Saturated density of retained soil;
Coefficient for wall friction;
Wall friction;
Design angle of base friction;
Bearing capacity of founding soil;
$H=\left(y_{g 3}+h_{3} / 2\right)+\left(w_{1} \times \sin (\varepsilon)\right)-H_{f}=2053 \mathrm{~mm}$
$H_{\text {incl }}=\left(\left(y_{g 3}+h_{3} / 2\right) \times \cos (\varepsilon)-\left(X_{g 3}-\left(w_{3} / 2\right)\right) \times \sin (\varepsilon)\right)$
$\alpha=A \tan \left[\left(\mathrm{y}_{\mathrm{g} 3}+\left(\mathrm{h}_{3} / 2\right)\right) /\left(\mathrm{w}_{1}-\left(\mathrm{x}_{\mathrm{g} 3}+\left(\mathrm{w}_{3} / 2\right)\right)\right)\right]+\varepsilon=$
$\theta=90 \mathrm{deg}-\varepsilon=85.0 \mathrm{deg}$
$\beta=0.0 \mathrm{deg}$
$\mathrm{M}=1.0$
ϕ = $\mathbf{3 8 . 0} \mathbf{~ d e g}$
$\gamma_{\mathrm{s}}=23 \mathrm{kN} / \mathrm{m}^{3}$
$\mathrm{K}=0.9$
$\delta=\phi \times \mathrm{K}=34.2 \mathrm{deg}$
$\delta_{b}=30.0 \mathrm{deg}$
$\mathrm{q}=110 \mathrm{kN} / \mathrm{m}^{2}$

GEODOMISI Ltd. - Dr. Costas Sachpazis Civil \& Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering \& Retaining Structures.
Tel.: (+30) 210 5238127, 2105711263 - Fax. : +30210571461 - Mobile: $(+30)$
$6936425722 \&(+44) 7585939944$, costas@sachpazis. info

Project: Gabion Retaining Wall Analysis \& Design, In accordance with BS8002:1994.				Job Ref.	
Civil \& Geotechnical Engineering				Sheet no./rev. 1	
Calc. by Dr. C. Sachpazis	$\begin{aligned} & \text { Date } \\ & 15 / 04 / 2014 \end{aligned}$	Chk'd by	Date	App'd by	Date

Active Pressure using Coulomb Theory;

$$
\mathrm{K}_{\mathrm{a}}=\left(\sin \left(\alpha+\phi^{\prime}\right)^{2}\right) /\left[(\sin (\alpha))^{2} \times \sin (\alpha-\delta) \times\left(1+\sqrt{ }\left[\left(\sin \left(\phi^{\prime}+\delta\right) \times \sin \left(\phi^{\prime}-\beta\right)\right) /(\sin (\alpha-\delta) \times \sin (\alpha+\beta))\right]\right)^{2}\right]=
$$

Loading

Surcharge;
Horizontal line load;
Vertical height of horizontal load from top gabion;
Dist of horiz. load from leading edge of top gabion;

Vertical height from toe;
Horizontal distance of horiz. load from toe;
Vertical line load;
Dist of vert. load from leading edge of top gabion
Horizontal distance of vert. load from toe;
Surcharge loading as equiv height of soil;
Active thrust due to soil;
Active thrust due to surcharge;
Total active thrust;
Total thrust resolved horizontally;
Total thrust resolved vertically;
Height above toe thrust acts if α is 0 ;
mm
Height above toe thrust acts;
Horiz distance to where thrust acts;
$p_{0}=10 \mathrm{kN} / \mathrm{m}^{2}$
$F_{\mathrm{h}}=10 \mathrm{kN} / \mathrm{m}$
$\mathrm{H}_{\mathrm{hl}}=\mathbf{0} \mathrm{mm}$
$D_{\mathrm{hl}}=\mathbf{0} \mathrm{mm}$
$d_{n l}=\left(H_{\text {incl }}+H_{h l}-D_{h 1} \times \tan (\varepsilon)\right)=1992 \mathrm{~mm}$
$\mathrm{b}_{\text {hl }}=\left(H_{\text {incl }} / \tan (\theta)+\mathrm{D}_{\text {hl }}\right)=\mathbf{1 7 4} \mathbf{~ m m}$
$\mathrm{F}_{\mathrm{v}}=5 \mathrm{kN} / \mathrm{m}$
$\mathrm{D}_{\mathrm{vl}}=0 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{vl}}=\left(\mathrm{H}_{\text {incl }} / \tan (\theta)+\mathrm{D}_{\mathrm{vl}}\right)=\mathbf{1 7 4} \mathbf{~ m m}$
$h_{s}=p_{0} / \gamma_{s}=435 \mathrm{~mm}$
$P_{a, \text { soil }}=0.5 \times \mathrm{K}_{\mathrm{a}} \times \gamma_{\mathrm{s}} \times \mathrm{H}^{2}=\mathbf{1 7 . 1} \mathrm{kN} / \mathrm{m}$
$P_{a, \text { surch }}=p_{0} \times K_{a} \times H=7.2 \mathrm{kN} / \mathrm{m}$
$\mathrm{P}_{\mathrm{a}}=\mathrm{P}_{\mathrm{a}, \text { soil }}+\mathrm{P}_{\mathrm{a}, \text { surch }}=\mathbf{2 4 . 3 \mathrm { kN } / \mathrm { m }}$
$\mathrm{P}_{\mathrm{h}}=\mathrm{P}_{\mathrm{a}} \times \cos (90-\alpha+\delta)=16.1 \mathrm{kN} / \mathrm{m}$
$\mathrm{P}_{\mathrm{v}}=\mathrm{Pa}_{\mathrm{a}} \times \sin (90-\alpha+\delta)=18.2 \mathrm{kN} / \mathrm{m}$
$\mathrm{d}_{\mathrm{h}, \text { soil }}=\mathrm{H} \times\left(\mathrm{H}+3 \times \mathrm{h}_{\mathrm{s}}\right) /\left(3 \times\left(\mathrm{H}+2 \times \mathrm{h}_{\mathrm{s}}\right)\right)=786$
$\mathrm{d}_{\mathrm{h}}=\mathrm{d}_{\mathrm{h}, \text { soil }}-\mathrm{w}_{1} \times \sin (\varepsilon)=551 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{v}}=\mathrm{w}_{1} \times \cos (\varepsilon)-\left(\mathrm{d}_{\mathrm{h}, \text { soil }} / \tan (\alpha)\right)=2489 \mathrm{~mm}$

Overturning stability - take moments about the toe

Overturning moment;
Restoring moment;
kNm/m
Factor of safety for overturning;
Min allowable factor of safety for overturning;
$M_{0}=\left(P_{h} \times d_{h}\right)+\left(F_{h} \times d_{h 1}\right)=\mathbf{2 8 . 8} \mathrm{kNm} / \mathrm{m}$
$M_{R}=\left(P_{v} \times b_{v}\right)+\left(W_{g} \times X_{g}\right)+\left(F_{v} \times b_{v l}\right)=135.7$
$\mathrm{F}_{\mathrm{o}, \mathrm{M}}=\mathrm{M}_{\mathrm{R}} / \mathrm{M}_{\mathrm{o}}=4.71$
$\mathrm{F}_{0, \mathrm{M}, \text { min }}=2.00$

PASS - Design FOS for overturning exceeds min allowable FOS for overturning
Sliding stability - ignore any passive pressure infront of structure

Total vertical force;
Total horizontal force;
Sliding force;
Resistance to sliding;
kN/m
Factor of safety for sliding;
Min allowable factor of safety for sliding;

$$
\begin{aligned}
& N=W_{g}+P_{v}+F_{v}=93.7 \mathrm{kN} / \mathrm{m} \\
& T=P_{h}+F_{h}=\mathbf{2 6 . 1} \mathrm{kN} / \mathrm{m} \\
& \mathrm{~F}_{\mathrm{f}}=\mathrm{T} \times \cos (\varepsilon)-\mathrm{N} \times \sin (\varepsilon)=\mathbf{1 7 . 8} \mathrm{kN} / \mathrm{m} \\
& \mathrm{~F}_{\mathrm{R}}=(\mathrm{N} \times \cos (\varepsilon)+\mathrm{T} \times \sin (\varepsilon)) \times \tan \left(\delta_{\mathrm{b}}\right)=55.2 \\
& \mathrm{~F}_{0, \mathrm{~S}}=\mathrm{F}_{\mathrm{R}} / \mathrm{F}_{\mathrm{f}}=\mathbf{3 . 0 9} \\
& \mathrm{F}_{\mathrm{o}, \mathrm{~S}, \min }=1.50
\end{aligned}
$$

PASS - Design FOS for sliding exceeds min allowable FOS for sliding

GEODOMISI Ltd. - Dr. Costas Sachpazis Civil \& Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering \& Retaining Structures.
Tel. : (+30) 210 5238127, 2105711263 - Fax. : + 302105711461 - Mobile: (+30)
6936425722 \& (+44) 7585939944, costas@sachpazis. info

Project: Gabion Retaining Wall Analysis \& Design, In accordance with BS8002:1994.				Job Ref.	
SectionCivil \& Geotechnical Engineering				Sheet no./rev. 1	
Calc. by Dr. C. Sachpazis	$\begin{array}{\|l\|} \hline \text { Date } \\ 15 / 04 / 2014 \end{array}$	Chk'd by	Date	App'd by	Date

Pressure at base

Force normal to base
Eccentricity;

Pressure at toe;
Pressure at heel;
$\mathrm{N}_{\mathrm{s}}=(\mathrm{N} \times \cos (\varepsilon)+\mathrm{T} \times \sin (\varepsilon))=95.6 \mathrm{kN} / \mathrm{m}$
$e=\left(w_{1} / 2\right)-\left(M_{R}-M_{0}\right) / N_{s}=\mathbf{2 3 2} \mathrm{mm}$

Reaction acts within middle third of base

$\sigma_{\text {toe }}=\left(N_{s} / \mathrm{w}_{1}\right) \times\left(1+\left(6 \times \mathrm{e} / \mathrm{w}_{1}\right)\right)=53.7 \mathrm{kN} / \mathrm{m}^{2}$
$\sigma_{\text {heel }}=\left(N_{s} / \mathrm{w}_{1}\right) \times\left(1-\left(6 \times \mathrm{e} / \mathrm{w}_{1}\right)\right)=17.1 \mathrm{kN} / \mathrm{m}^{2}$

PASS - Allowable bearing pressure exceeds max design pressure to base

Check for sliding and overturning between courses 1 and 2

Centre of gravity

Horizontal distance to centre of gravity gabion 2;
Horizontal distance to centre of gravity gabion 3
Vertical distance to centre of gravity gabion 2;
Vertical distance to centre of gravity gabion 3;
Weight of gabion 2;
Weight of gabion 3;
Weight of entire gabion;
Horiz distance to centre of gravity entire gabion;
Vert distance to centre of gravity entire gabion;
Correcting for wall inclination horiz dist;
Vertical change in height due to wall inclination;
$\sin (\varepsilon))=179 \mathrm{~mm}$
Calculate effective height of wall
Effective height of wall;
Height of wall from toe to front edge of top gabion;
$=1295 \mathrm{~mm}$
Calculate the angle of rear plane of wall
Effective angle of rear plane of wall;
82.0 deg

Calculate the effective face angle
Effective face angle;

Loading

Surcharge;
Horizontal line load;
Vertical height of horizontal load from top gabion;
Dist of horiz. load from leading edge of top gabion;
Vertical height from toe;
Horizontal distance of horiz. load from toe;
Vertical line load;
Dist of vert. load from leading edge of top gabion;
$\mathrm{x}_{\mathrm{g} 2}=\mathrm{w}_{2} / 2=1150 \mathrm{~mm}$
$\mathrm{X}_{\mathrm{g} 3}=\mathrm{w}_{3} / 2+\mathrm{S}_{3}=1000 \mathrm{~mm}$
$\mathrm{y}_{\mathrm{g} 2}=\mathrm{h}_{2} / 2=350 \mathrm{~mm}$
$\mathrm{y}_{\mathrm{g} 3}=\mathrm{h}_{3} / 2+\mathrm{h}_{2}=\mathbf{1 0 0 0} \mathbf{~ m m}$
$\mathrm{W}_{\mathrm{g} 2}=\gamma_{\mathrm{d}} \times \mathrm{W}_{2} \times \mathrm{h}_{2}=24.2 \mathrm{kN} / \mathrm{m}$
$\mathrm{W}_{\mathrm{g} 3}=\gamma_{\mathrm{d}} \times \mathrm{W}_{3} \times \mathrm{h}_{3}=18.0 \mathrm{kN} / \mathrm{m}$
$\mathrm{W}_{\mathrm{g}}=\mathrm{W}_{\mathrm{g} 2}+\mathrm{W}_{\mathrm{g} 3}=42.2 \mathrm{kN} / \mathrm{m}$
$\mathrm{x}_{\mathrm{g}}=\left(\left(\mathrm{W}_{\mathrm{g} 2} \times \mathrm{x}_{\mathrm{g} 2}\right)+\left(\mathrm{W}_{\mathrm{g} 3} \times \mathrm{x}_{\mathrm{g} 3}\right)\right) / \mathrm{W}_{\mathrm{g}}=\mathbf{1 0 8 6} \mathrm{mm}$
$\mathrm{y}_{\mathrm{g}}=\left(\left(\mathrm{W}_{\mathrm{g} 2} \times \mathrm{y}_{\mathrm{g} 2}\right)+\left(\mathrm{W}_{\mathrm{g} 3} \times \mathrm{y}_{\mathrm{g} 3}\right)\right) / \mathrm{W}_{\mathrm{g}}=\mathbf{6 2 8} \mathrm{mm}$
$\mathrm{X}_{\mathrm{g}}=\mathrm{x}_{\mathrm{g}} \times \cos (\varepsilon)+\mathrm{y}_{\mathrm{g}} \times \sin (\varepsilon)=1137 \mathrm{~mm}$
$\mathrm{H}_{\mathrm{f}}=\mathrm{y}_{\mathrm{g} 3}+\mathrm{h}_{3} / 2-\left(\left(\mathrm{y}_{\mathrm{g} 3}+\mathrm{h}_{3} / 2\right) \times \cos (\varepsilon)-\left(\mathrm{x}_{\mathrm{g} 3}+\mathrm{w}_{3} / 2\right) \times\right.$
$H=\left(y_{93}+h_{3} / 2\right)+\left(w_{2} \times \sin (\varepsilon)\right)-H_{f}=1321 \mathrm{~mm}$
$H_{\text {incl }}=\left(\left(y_{g 3}+h_{3} / 2\right) \times \cos (\varepsilon)-\left(X_{93}-\left(w_{3} / 2\right)\right) \times \sin (\varepsilon)\right)$
$\alpha=A \tan \left[\left(\mathrm{y}_{\mathrm{g} 3}+\left(\mathrm{h}_{3} / 2\right)\right) /\left(\mathrm{w}_{2}-\left(\mathrm{X}_{\mathrm{g} 3}+\left(\mathrm{w}_{3} / 2\right)\right)\right)\right]+\varepsilon=$
$\theta=90 \mathrm{deg}-\varepsilon=85.0 \mathrm{deg}$
$\mathrm{p}_{\mathrm{o}}=10 \mathrm{kN} / \mathrm{m}^{2}$
$F_{\mathrm{h}}=10 \mathrm{kN} / \mathrm{m}$
$\mathrm{H}_{\mathrm{hl}}=0 \mathrm{~mm}$
$D_{\text {hl }}=0 \mathrm{~mm}$
$d_{\text {hl }}=\left(H_{\text {incl }}+H_{\text {hl }}-D_{\text {hl }} \times \tan (\varepsilon)\right)=1295 \mathrm{~mm}$
$\mathrm{b}_{\text {hl }}=\left(\mathrm{H}_{\text {incl }} / \tan (\theta)+\mathrm{D}_{\text {hl }}\right)=\mathbf{1 1 3} \mathbf{~ m m}$
$\mathrm{F}_{\mathrm{v}}=5 \mathrm{kN} / \mathrm{m}$
$\mathrm{D}_{\mathrm{vl}}=0 \mathrm{~mm}$

GEODOMISI Ltd. - Dr. Costas Sachpazis Civil \& Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering \& Retaining Structures.
Tel. : (+30) 2105238127,2105711263 - Fax. : +302105711461 - Mobile: (+30)
6936425722 \& (+44) 7585939944, costas@sachpazis. info

Project: Gabion Retaining Wall Analysis \& Design, In accordance with BS8002:1994.				Job Ref.	
Civil \& Geotechnical Engineering				Sheet no./rev. 1	
Calc. by Dr. C. Sachpazis	$\begin{aligned} & \text { Date } \\ & 15 / 04 / 2014 \end{aligned}$	Chk'd by	Date	App'd by	Date

Horizontal distance of vert. load from toe;
Surcharge loading as equiv height of soil;
Active thrust due to soil;
Active thrust due to surcharge;
Total active thrust;
Total thrust resolved horizontally;
Total thrust resolved vertically;
Height above toe thrust acts if α is 0 ;
mm
Height above toe thrust acts;
Horiz distance to where thrust acts;
$\mathrm{b}_{\mathrm{vl}}=\left(\mathrm{H}_{\text {incl }} / \tan (\theta)+\mathrm{D}_{\mathrm{vl}}\right)=\mathbf{1 1 3} \mathbf{~ m m}$
$h_{s}=p_{o} / \gamma_{\mathrm{s}}=435 \mathrm{~mm}$
$\mathrm{P}_{\mathrm{a}, \text { soil }}=0.5 \times \mathrm{K}_{\mathrm{a}} \times \gamma_{\mathrm{s}} \times \mathrm{H}^{2}=7.1 \mathrm{kN} / \mathrm{m}$
$P_{a, \text { surch }}=p_{o} \times K_{a} \times H=4.7 \mathrm{kN} / \mathrm{m}$
$P_{a}=P_{a, \text { soil }}+P_{a, \text { surch }}=11.7 \mathrm{kN} / \mathrm{m}$
$\mathrm{P}_{\mathrm{h}}=\mathrm{P}_{\mathrm{a}} \times \cos (90-\alpha+\delta)=8.7 \mathrm{kN} / \mathrm{m}$
$P_{v}=P_{a} \times \sin (90-\alpha+\delta)=7.9 \mathrm{kN} / \mathrm{m}$
$d_{h, \text { soil }}=H \times\left(H+3 \times h_{s}\right) /\left(3 \times\left(H+2 \times h_{s}\right)\right)=528$
$\mathrm{d}_{\mathrm{h}}=\mathrm{d}_{\mathrm{h}, \text { soil }}-\mathrm{w}_{2} \times \sin (\varepsilon)=327 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{v}}=\mathrm{w}_{2} \times \cos (\varepsilon)-\left(\mathrm{d}_{\mathrm{h}, \text { soil }} / \tan (\alpha)\right)=2217 \mathrm{~mm}$

Overturning stability - take moments about the toe

Overturning moment;
Restoring moment;
kNm/m
Factor of safety for overturning;
Min allowable factor of safety for overturning;
PASS - Design FOS for overturning exceeds min allowable FOS for overturning
Sliding stability - ignore any passive pressure infront of structure

Total vertical force;
Total horizontal force;
Sliding force;
Resistance to sliding;
kN/m
Factor of safety for sliding;
Min allowable factor of safety for sliding;
$\mathrm{M}_{\mathrm{o} 2}=\left(\mathrm{P}_{\mathrm{h}} \times \mathrm{d}_{\mathrm{h}}\right)+\left(\mathrm{F}_{\mathrm{h}} \times \mathrm{d}_{\mathrm{h}}\right)=15.8 \mathrm{kNm} / \mathrm{m}$
$M_{R 2}=\left(P_{v} \times b_{v}\right)+\left(W_{g} \times X_{g}\right)+\left(F_{v} \times b_{v}\right)=65.9$
$\mathrm{F}_{\mathrm{O}, \mathrm{M} 2}=\mathrm{M}_{\mathrm{R} 2} / \mathrm{M}_{\mathrm{0} 2}=4.17$
$\mathrm{F}_{\mathrm{O}, \mathrm{M}, \text { min }}=\mathbf{2 . 0 0}$
$\mathrm{N}=\mathrm{W}_{\mathrm{g}}+\mathrm{P}_{\mathrm{v}}+\mathrm{F}_{\mathrm{v}}=55.0 \mathrm{kN} / \mathrm{m}$
$\mathrm{T}=\mathrm{P}_{\mathrm{h}}+\mathrm{F}_{\mathrm{h}}=18.7 \mathrm{kN} / \mathrm{m}$
$\mathrm{F}_{\mathrm{f} 2}=\mathrm{T} \times \cos (\varepsilon)-\mathrm{N} \times \sin (\varepsilon)=13.8 \mathrm{kN} / \mathrm{m}$
$\mathrm{F}_{\mathrm{R} 2}=(\mathrm{N} \times \cos (\varepsilon)+\mathrm{T} \times \sin (\varepsilon)) \times \tan \left(\delta_{\mathrm{bg}}\right)=39.5$
$\mathrm{F}_{\mathrm{o}, \mathrm{S} 2}=\mathrm{F}_{\mathrm{R} 2} / \mathrm{F}_{\mathrm{f} 2}=\mathbf{2 . 8 6}$
$\mathrm{F}_{0, \mathrm{~S}, \text { min }}=\mathbf{1 . 5 0}$

PASS - Design FOS for sliding exceeds min allowable FOS for sliding

Check for sliding and overturning between courses 2 and 3

Centre of gravity

Horizontal distance to centre of gravity gabion 3;
Vertical distance to centre of gravity gabion 3;
$\mathrm{x}_{\mathrm{g} 3}=\mathrm{w}_{3} / 2=1000 \mathrm{~mm}$
$\mathrm{y}_{\mathrm{g} 3}=\mathrm{h}_{3} / 2=\mathbf{3 0 0} \mathrm{mm}$
Weight of gabion 3;
Weight of entire gabion;
Horiz distance to centre of gravity entire gabion;
Vert distance to centre of gravity entire gabion;
Correcting for wall inclination horiz dist;
Vertical change in height due to wall inclination
$\mathrm{W}_{\mathrm{g} 3}=\gamma_{\mathrm{d}} \times \mathrm{W}_{3} \times \mathrm{h}_{3}=18.0 \mathrm{kN} / \mathrm{m}$
$\mathrm{W}_{\mathrm{g}}=\mathrm{W}_{\mathrm{g} 3}=18.0 \mathrm{kN} / \mathrm{m}$
$\mathrm{x}_{\mathrm{g}}=\left(\left(\mathrm{W}_{\mathrm{g} 3} \times \mathrm{x}_{\mathrm{g} 3}\right)\right) / \mathrm{W}_{\mathrm{g}}=\mathbf{1 0 0 0} \mathbf{~ m m}$
$\mathrm{y}_{\mathrm{g}}=\left(\left(\mathrm{W}_{\mathrm{g} 3} \times \mathrm{y}_{\mathrm{g} 3}\right)\right) / \mathrm{W}_{\mathrm{g}}=\mathbf{3 0 0} \mathrm{mm}$
$X_{g}=x_{g} \times \cos (\varepsilon)+y_{g} \times \sin (\varepsilon)=1022 \mathrm{~mm}$
$H_{f}=y_{g 3}+h_{3} / 2-\left(\left(y_{g 3}+h_{3} / 2\right) \times \cos (\varepsilon)-\left(x_{g 3}+W_{3} / 2\right) \times\right.$
$\sin (\varepsilon))=177 \mathrm{~mm}$

GEODOMISI Ltd. - Dr. Costas Sachpazis Civil \& Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering \& Retaining Structures.
tel.: (+30) 210 5238127, 2105711263 - Fax. :+30 2105711461 - Mobile: (+30)
6936425722 \& (+44) 7585939944, costas@sachpazis. info

Project: Gabion Retaining Wall Analysis \& Design, In accordance with BS8002:1994.				Job Ref.	
SectionCivil \& Geotechnical Engineering				Sheet no./rev. 1	
Calc. by Dr. C. Sachpazis	$\begin{array}{\|l} \hline \text { Date } \\ 15 / 04 / 2014 \end{array}$	Chk'd by	Date	App'd by	Date

Calculate effective height of wall

Effective height of wall;
Height of wall from toe to front edge of top gabion;
$=598 \mathrm{~mm}$

Calculate the angle of rear plane of wall

Effective angle of rear plane of wall;
Calculate the effective face angle
Effective face angle;

Loading

Surcharge;
Horizontal line load;
Vertical height of horizontal load from top gabion;
Dist of horiz. load from leading edge of top gabion;
Vertical height from toe;
Horizontal distance of horiz. load from toe;
Vertical line load;
Dist of vert. load from leading edge of top gabion;
Horizontal distance of vert. load from toe;
Surcharge loading as equiv height of soil;
Active thrust due to soil;
Active thrust due to surcharge;
Total active thrust;
Total thrust resolved horizontally;
Total thrust resolved vertically;
Height above toe thrust acts if α is 0 ;
mm
Height above toe thrust acts;
Horiz distance to where thrust acts;
$H=\left(y_{g 3}+h_{3} / 2\right)+\left(w_{3} \times \sin (\varepsilon)\right)-H_{f}=598 \mathrm{~mm}$
$H_{\text {incl }}=\left(\left(y_{g 3}+h_{3} / 2\right) \times \cos (\varepsilon)-\left(X_{g 3}-\left(w_{3} / 2\right)\right) \times \sin (\varepsilon)\right)$
$\alpha=90 \mathrm{deg}+\varepsilon=95.0 \mathrm{deg}$
$\theta=90 \mathrm{deg}-\varepsilon=\mathbf{8 5 . 0} \mathrm{deg}$
$\mathrm{p}_{\mathrm{o}}=10 \mathrm{kN} / \mathrm{m}^{2}$
$F_{\mathrm{h}}=10 \mathrm{kN} / \mathrm{m}$
$\mathrm{H}_{\mathrm{hl}}=\mathbf{0} \mathrm{mm}$
$\mathrm{D}_{\mathrm{hl}}=\mathbf{0} \mathrm{mm}$
$d_{h l}=\left(H_{\text {incl }}+H_{h l}-D_{h l} \times \tan (\varepsilon)\right)=598 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{hl}}=\left(\mathrm{H}_{\text {incl }} / \tan (\theta)+\mathrm{D}_{\mathrm{hl}}\right)=\mathbf{5 2} \mathbf{~ m m}$
$\mathrm{F}_{\mathrm{v}}=5 \mathrm{kN} / \mathrm{m}$
$\mathrm{D}_{\mathrm{vl}}=0 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{vl}}=\left(\mathrm{H}_{\text {incl }} / \tan (\theta)+\mathrm{D}_{\mathrm{vl}}\right)=52 \mathrm{~mm}$
$h_{s}=p_{o} / \gamma_{\mathrm{s}}=435 \mathrm{~mm}$
$P_{a, \text { soil }}=0.5 \times K_{a} \times \gamma_{s} \times H^{2}=1.4 \mathrm{kN} / \mathrm{m}$
$P_{a, \text { surch }}=p_{o} \times K_{\mathrm{a}} \times \mathrm{H}=2.1 \mathrm{kN} / \mathrm{m}$
$P_{a}=P_{a, \text { soil }}+P_{a, \text { surch }}=3.6 \mathrm{kN} / \mathrm{m}$
$P_{h}=P_{a} \times \cos (90-\alpha+\delta)=3.1 \mathrm{kN} / \mathrm{m}$
$P_{v}=P_{a} \times \sin (90-\alpha+\delta)=1.7 \mathrm{kN} / \mathrm{m}$
$\mathrm{d}_{\mathrm{h}, \text { soil }}=\mathrm{H} \times\left(\mathrm{H}+3 \times \mathrm{h}_{\mathrm{s}}\right) /\left(3 \times\left(\mathrm{H}+2 \times \mathrm{h}_{\mathrm{s}}\right)\right)=\mathbf{2 5 8}$
$\mathrm{d}_{\mathrm{h}}=\mathrm{d}_{\mathrm{h}, \text { soil }}-\mathrm{W}_{3} \times \sin (\varepsilon)=\mathbf{8 4} \mathrm{mm}$
$\mathrm{b}_{\mathrm{v}}=\mathrm{w}_{3} \times \cos (\varepsilon)-\left(\mathrm{d}_{\mathrm{h}, \text { soil }} / \tan (\alpha)\right)=2015 \mathrm{~mm}$

Overturning stability - take moments about the toe

Overturning moment;
$\mathrm{M}_{03}=\left(\mathrm{P}_{\mathrm{h}} \times \mathrm{d}_{\mathrm{h}}\right)+\left(\mathrm{F}_{\mathrm{h}} \times \mathrm{d}_{\mathrm{h}}\right)=6.2 \mathrm{kNm} / \mathrm{m}$
Restoring moment;
$M_{R 3}=\left(P_{v} \times b_{v}\right)+\left(W_{g} \times X_{g}\right)+\left(F_{v} \times b_{v}\right)=\mathbf{2 2 . 2}$
kNm/m
Factor of safety for overturning;
$\mathrm{F}_{\mathrm{O}, \mathrm{M} 3}=\mathrm{M}_{\mathrm{R} 3} / \mathrm{M}_{03}=3.55$
Min allowable factor of safety for overturning;
$\mathrm{F}_{0, \mathrm{M}, \text { min }}=2.00$

PASS - Design FOS for overturning exceeds min allowable FOS for overturning
Sliding stability - ignore any passive pressure infront of structure

Total vertical force; Total horizontal force; Sliding force;
$\mathrm{N}=\mathrm{W}_{\mathrm{g}}+\mathrm{P}_{\mathrm{v}}+\mathrm{F}_{\mathrm{v}}=24.7 \mathrm{kN} / \mathrm{m}$
$\mathrm{T}=\mathrm{P}_{\mathrm{h}}+\mathrm{F}_{\mathrm{h}}=13.1 \mathrm{kN} / \mathrm{m}$
$\mathrm{F}_{\mathrm{f} 3}=\mathrm{T} \times \cos (\varepsilon)-\mathrm{N} \times \sin (\varepsilon)=10.9 \mathrm{kN} / \mathrm{m}$

GEODOMISI Ltd. - Dr. Costas Sachpazis Civil \& Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering \& Retaining Structures.
Tel.: (+30) 2105238127,2105711263 - Fax. : + 302105711461 - Mobile: (+30 6936425722 \& (+44) 7585939944 , costas@ sachpazis. info

Project: Gabion Retaining Wall Analysis \& Design, In accordance with BS8002:1994.

Section
Civil \& Geotechnical Engineering
Calc. by
Dr. C. Sachpazis

Date	Chk'd by

15/04/2014
$\mathrm{F}_{\mathrm{R} 3}=(\mathrm{N} \times \cos (\varepsilon)+\mathrm{T} \times \sin (\varepsilon)) \times \tan \left(\delta_{\mathrm{bg}}\right)=18.1$
Resistance to sliding;
$F_{\mathrm{o}, \mathrm{S} 3}=\mathrm{F}_{\mathrm{R} 3} / \mathrm{F}_{\mathrm{f} 3}=1.66$
$\mathrm{F}_{0, \mathrm{~S}, \text { min }}=1.50$
PASS - Design FOS for sliding exceeds min allowable FOS for sliding

