

RAFT FOUNDATION DESIGN (BS8110 : PART 1 : 1997)

Soil and raft definition

Soil definition

Allowable bearing pressure; $q_{allow} = 75.0 \text{ kN/m}^2$ Number of types of soil forming sub-soil; Two or more types Soil density; Firm to loose

Depth of hardcore beneath slab; hhcoreslab = **150** mm; (Dispersal allowed for bearing

pressure check)

Depth of hardcore beneath thickenings; hhcorethick = 100 mm; (Dispersal allowed for bearing

pressure check)

Density of hardcore; $\gamma_{hcore} = 20.0 \text{ kN/m}^3$ Basic assumed diameter of local depression; $\phi_{depbasic} = 3500 \text{mm}$

Diameter under slab modified for hardcore; $\phi_{depslab} = \phi_{depbasic} - h_{hcoreslab} = 3350 \text{ mm}$ Diameter under thickenings modified for hardcore; $\phi_{depthick} = \phi_{depbasic} - h_{hcorethick} = 3400 \text{ mm}$

Raft slab definition

 $\label{eq:max} \begin{array}{ll} \text{Max dimension/max dimension between joints;} & I_{\text{max}} = 10.000 \text{ m} \\ \text{Slab thickness;} & h_{\text{slab}} = 250 \text{ mm} \\ \text{Concrete strength;} & f_{\text{cu}} = 40 \text{ N/mm}^2 \end{array}$

Poissons ratio of concrete; v = 0.2

Slab mesh reinforcement strength; $f_{yslab} = 500 \text{ N/mm}^2$

Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Rox:-30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Project: Raft Foundation Analysis & Design, In accordance with BS8110 : Part 1-1997 and the recommended values.			Job Ref.		
Section Civil & Geotechnical Engineering			Sheet no./rev. 1		
Calc. by Dr. C. Sachpazis	Date 23/02/2014	Chk'd by	Date	App'd by	Date

Partial safety factor for steel reinforcement;

From C&CA document 'Concrete ground floors' Table 5

Minimum mesh required in top for shrinkage; A142;

Actual mesh provided in top; A393 (A_{sslabtop} = 393 mm²/m)
Mesh provided in bottom; A393 (A_{sslabtom} = 393 mm²/m)

 $y_s = 1.15$

Top mesh bar diameter; $\phi_{slabtop} = 10 \text{ mm}$ Bottom mesh bar diameter; $\phi_{slabbtm} = 10 \text{ mm}$ Cover to top reinforcement; $c_{top} = 20 \text{ mm}$ Cover to bottom reinforcement; $c_{btm} = 40 \text{ mm}$

Average effective depth of top reinforcement; $d_{tslabav} = h_{slab} - c_{top} - \phi_{slabtop} = 220 \text{ mm}$ Average effective depth of bottom reinforcement; $d_{bslabav} = h_{slab} - c_{btm} - \phi_{slabbtm} = 200 \text{ mm}$ Overall average effective depth; $d_{slabav} = (d_{tslabav} + d_{bslabav})/2 = 210 \text{ mm}$ Minimum effective depth of top reinforcement; $d_{tslabmin} = d_{tslabav} - \phi_{slabtop}/2 = 215 \text{ mm}$ Minimum effective depth of bottom reinforcement; $d_{bslabmin} = d_{bslabav} - \phi_{slabtom}/2 = 195 \text{ mm}$

Edge beam definition

Overall depth; $\begin{aligned} & h_{\text{edge}} = \textbf{500} \text{ mm} \\ & \text{Width;} \\ & \text{Strength of main bar reinforcement;} \\ & \text{Strength of link reinforcement;} \end{aligned} \qquad \begin{aligned} & h_{\text{edge}} = \textbf{500} \text{ mm} \\ & f_{y} = \textbf{500} \text{ N/mm}^{2} \\ & f_{ys} = \textbf{500} \text{ N/mm}^{2} \end{aligned}$

Reinforcement provided in top; $4 \text{ T16 bars } (A_{\text{sedgetop}} = 804 \text{ mm}^2)$ Reinforcement provided in bottom; $3 \text{ T16 bars } (A_{\text{sedgebtm}} = 603 \text{ mm}^2)$

Link reinforcement provided; 2 T10 legs at 300 ctrs ($A_{sv}/s_v = 0.524$ mm)

Bottom cover to links; $c_{beam} = 40 \text{ mm}$

Effective depth of top reinforcement; $d_{edgetop} = h_{edge} - c_{top} - \phi_{slabtop} - \phi_{edgelink} - \phi_{edgetop}/2 = h_{edgetop}/2 = h_{edg$

452 mm

Effective depth of bottom reinforcement; $d_{edgebtm} = h_{edge} - c_{beam} - \phi_{edgebtm} / 2 = 442$

mm

Internal slab design checks

Basic loading

Slab self weight; $w_{slab} = 24 \text{ kN/m}^3 \times h_{slab} = \textbf{6.0 kN/m}^2$ Hardcore; $w_{hcoreslab} = \gamma_{hcore} \times h_{hcoreslab} = \textbf{3.0 kN/m}^2$

Applied loading

Uniformly distributed dead load; $w_{Dudl} = 2.0 \text{ kN/m}^2$ Uniformly distributed live load; $w_{Ludl} = 5.0 \text{ kN/m}^2$

Internal slab bearing pressure check

Total uniform load at formation level; $w_{udl} = w_{slab} + w_{hcoreslab} + w_{Dudl} + w_{Ludl} = 16.0 \text{ kN/m}^2$

PASS - w_{udl} <= q_{allow} - Applied bearing pressure is less than allowable

Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711243 - Fox.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Project: Raft Foundation Analysis & Design, In accordance with BS8110: Part 1-1997 and the recommended values.			Job) Ref.	
Section Civil & Geotechnical Engineering				Sheet no./rev. 1	
Calc. by Dr. C. Sachpazis	Date 23/02/2014	Chk'd by	Date	App'd by	Date

Internal slab bending and shear check

Applied bending moments

Span of slab; $I_{slab} = \phi_{depslab} + d_{tslabav} = 3570 \text{ mm}$ Ultimate self weight udl; $w_{swult} = 1.4 \times w_{slab} = 8.4 \text{ kN/m}^2$

Self weight moment at centre; $M_{csw} = w_{swult} \times I_{slab}^2 \times (1 + v) / 64 = 2.0 \text{ kNm/m}$

Self weight moment at edge; $M_{esw} = w_{swult} \times l_{slab}^2 / 32 = 3.3 \text{ kNm/m}$ Self weight shear force at edge; $V_{sw} = w_{swult} \times l_{slab} / 4 = 7.5 \text{ kN/m}$

Moments due to applied uniformly distributed loads

Ultimate applied udl; $w_{udlult} = 1.4 \times w_{Dudl} + 1.6 \times w_{Ludl} = 10.8 \text{ kN/m}^2$ Moment at centre; $M_{cudl} = w_{udlult} \times I_{slab}^2 \times (1 + v) / 64 = 2.6 \text{ kNm/m}$

Moment at edge; $M_{eudl} = w_{udlult} \times I_{slab}^{2} / 32 = 4.3 \text{ kNm/m}$ Shear force at edge; $V_{udl} = w_{udlult} \times I_{slab} / 4 = 9.6 \text{ kN/m}$

Resultant moments and shears

Total moment at edge; $M_{\Sigma e}$ = **7.6** kNm/m Total moment at centre; $M_{\Sigma c}$ = **4.6** kNm/m Total shear force; V_{Σ} = **17.1** kN/m

Reinforcement required in top

K factor; $K_{slabtop} = M_{\Sigma e}/(f_{cu} \times d_{tslabav}^2) = \textbf{0.004}$ Lever arm; $z_{slabtop} = d_{tslabav} \times min(0.95, 0.5 + \sqrt{0.25 - 10.004})$

 $K_{slabtop}/0.9)) = 209.0 \text{ mm}$

Area of steel required for bending; $A_{sslabtopbend} = M_{\Sigma e}/((1.0/\gamma_s) \times f_{yslab} \times z_{slabtop}) = 84$

mm²/m

Minimum area of steel required; $A_{sslabmin} = 0.0013 \times h_{slab} = 325 \text{ mm}^2/\text{m}$

Area of steel required; $A_{sslabtopreq} = max(A_{sslabtopbend}, A_{sslabtopbend}) = 325 \text{ mm}^2/\text{m}$ PASS - $A_{sslabtopreq} <= A_{sslabtop}$ - Area of reinforcement provided in top to span local depressions is adequate

Reinforcement required in bottom

K factor; $K_{slabbtm} = M_{\Sigma c}/(f_{cu} \times d_{bslabav}^2) = \textbf{0.003}$ Lever arm; $z_{slabbtm} = d_{bslabav} \times min(0.95, 0.5 + \sqrt{0.25 - 10.005})$

 $K_{slabbtm}/0.9)) = 190.0 \text{ mm}$

Area of steel required for bending; $A_{sslabbtmbend} = M_{\Sigma c}/((1.0/\gamma_s) \times f_{yslab} \times z_{slabbtm}) = 56$

mm²/m

Area of steel required; $A_{sslabbtmreq} = max(A_{sslabbtmbend}, A_{sslabbmin}) = 325$

mm²/m

PASS - $A_{sslabbtmreq}$ <= $A_{sslabbtm}$ - Area of reinforcement provided in bottom to span local depressions is adequate

Shear check

Applied shear stress; $V = V_{\Sigma}/d_{tslabmin} = 0.080 \text{ N/mm}^2$ Tension steel ratio; $\rho = 100 \times A_{sslabtoo}/d_{tslabmin} = 0.183$

Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures.

Tel.: (+30) 210 5238127, 210 5711263 - Fax: +30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7859399944, costse@sechapats.info

Project: Raft Foundation Analysis & Design, In accordance with BS8110: Part 1-1997 and the recommended values.			Job) Ref.	
Section Civil & Geotechnical Engineering				Sheet no./rev. 1	
Calc. by Dr. C. Sachpazis	Date 23/02/2014	Chk'd by	Date	App'd by	Date

From BS8110-1:1997 - Table 3.8;

Design concrete shear strength; $v_c = 0.490 \text{ N/mm}^2$

PASS - $v \le v_c$ - Shear capacity of the slab is adequate

Internal slab deflection check

Basic allowable span to depth ratio; Ratio_{basic} = **26.0**

Moment factor; $M_{factor} = M_{\Sigma c}/d_{bslabav}^2 = 0.115 \text{ N/mm}^2$

Steel service stress; $f_s = 2/3 \times f_{yslab} \times A_{sslabbtm} = 47.109$

N/mm²

Modification factor; $MF_{slab} = min(2.0, 0.55 + [(477N/mm^2 - f_s)/(120 \times f_s)]$

 $(0.9N/mm^2 + M_{factor}))])$

 $MF_{slab} = 2.000$

Modified allowable span to depth ratio; Ratio_{allow} = Ratio_{basic} × MF_{slab} = **52.000** Actual span to depth ratio; Ratio_{actual} = $I_{slab}/I_{obsiabav}$ = **17.850**

PASS - Ratio_{actual} <= Ratio_{allow} - Slab span to depth ratio is adequate

Edge beam design checks

Basic loading

Hardcore; $w_{hcorethick} = \gamma_{hcore} \times h_{hcorethick} = 2.0 \text{ kN/m}^2$ Edge beam self weight; $w_{edge} = 24 \text{ kN/m}^3 \times h_{edge} \times b_{edge} = 6.0 \text{ kN/m}$

Edge beam bearing pressure check

Effective bearing width of edge beam; $b_{bearing} = b_{edge} = 500 \text{ mm}$

Total uniform load at formation level; $W_{\text{Udledge}} = W_{\text{Dudl}} + W_{\text{Ludl}} + W_{\text{edge}} / b_{\text{bearing}} + W_{\text{hcorethick}} = 21.0$

kN/m²

PASS - $w_{udledge}$ <= q_{allow} - Applied bearing pressure is less than allowable

Edge beam bending check

Divider for moments due to udl's; $\beta_{udl} = 10.0$

Applied bending moments

Span of edge beam; $I_{edge} = \phi_{depthick} + d_{edgetop} = 3852 \text{ mm}$ Ultimate self weight udl; $W_{edgeult} = 1.4 \times W_{edge} = 8.4 \text{ kN/m}$

Ultimate slab udl (approx); $w_{\text{edgeslab}} = \max(0 \text{ kN/m}, 1.4 \times w_{\text{slab}} \times ((\phi_{\text{depthick}}/2 \times 3/4) - (\phi_{\text{depthick}}/2 \times 3/4) - (\phi_$

 $b_{edge})) = 6.5 \text{ kN/m}$

Self weight and slab bending moment; $M_{edgesw} = (w_{edgeult} + w_{edgeslab}) \times l_{edge}^2/\beta_{udl} = 22.1 \text{ kNm}$ Self weight shear force; $V_{edgesw} = (w_{edgeult} + w_{edgeslab}) \times l_{edge}/2 = 28.7 \text{ kN}$

Moments due to applied uniformly distributed loads

Ultimate udl (approx); $\begin{aligned} & w_{\text{edgeudl}} = w_{\text{udlult}} \times \phi_{\text{depthick}}/2 \times 3/4 = \textbf{13.8 kN/m} \\ & \text{Bending moment;} \end{aligned}$ $\begin{aligned} & M_{\text{edgeudl}} = w_{\text{edgeudl}} \times l_{\text{edge}}^2/\beta_{\text{udl}} = \textbf{20.4 kNm} \\ & \text{Shear force;} \end{aligned}$ $V_{\text{edgeudl}} = w_{\text{edgeudl}} \times l_{\text{edge}}/2 = \textbf{26.5 kN}$

Resultant moments and shears

Total moment (hogging and sagging); $M_{\Sigma edge} = 42.6 \text{ kNm}$

Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Rev.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@rachpazis.info

Project: Raft Foundation Analysis & Design, In accordance with BS8110: Part 1-1997 and the recommended values.				Job	Ref.
Section Civil & Geotechnical Engineering				Sheet no./rev. 1	
Calc. by	Date 23/02/2014	Chk'd by	Date	App'd by	Date

Maximum shear force;

 $V_{\Sigma edge} = 55.2 \text{ kN}$

Reinforcement required in top

Width of section in compression zone; $b_{edgetop} = b_{edge} = 500 \text{ mm}$ Average web width; $b_{w} = b_{edge} = 500 \text{ mm}$

K factor; $\text{K}_{\text{edgetop}} = \text{M}_{\text{\Sigma} \text{edge}}/(f_{\text{cu}} \times b_{\text{edgetop}} \times d_{\text{edgetop}}^2) = \textbf{0.010}$ Lever arm; $z_{\text{edgetop}} = d_{\text{edgetop}} \times \min(0.95, 0.5 + \sqrt{0.25} - 10.00)$

 $K_{\text{edgetop}}/0.9)) = 429 \text{ mm}$

Area of steel required for bending; $A_{\text{sedgetopbend}} = M_{\text{sedget}}/((1.0/\gamma_s) \times f_V \times Z_{\text{edgetop}}) = 228$

 mm^2

Minimum area of steel required; $A_{\text{sedgetopmin}} = 0.0013 \times 1.0 \times b_{\text{w}} \times h_{\text{edge}} = 325 \text{ mm}^2$ Area of steel required; $A_{\text{sedgetopreq}} = \max(A_{\text{sedgetopbend}}, A_{\text{sedgetopmin}}) = 325$

 mm^2

PASS - A_{sedgetopreq} <= A_{sedgetop} - Area of reinforcement provided in top of edge beams is adequate

Reinforcement required in bottom

Width of section in compression zone; $b_{edgebtm} = b_{edge} + 0.1 \times l_{edge} = 885 \text{ mm}$

K factor; $K_{edgebtm} = M_{\Sigma edgebtm} \times d_{edgebtm} \times d_{edgebtm}^2 = 0.006$

Lever arm; $z_{edgebtm} = d_{edgebtm} \times min(0.95, 0.5 + \sqrt{0.25} - 1.00)$

 $K_{edgebtm}/0.9)) = 420 \text{ mm}$

Area of steel required for bending; $A_{\text{sedgebtmbend}} = M_{\text{Sedgebtmbend}} / ((1.0/\gamma_s) \times f_v \times Z_{\text{edgebtm}}) = 233$

 mm^2

 $\begin{aligned} & \text{Minimum area of steel required;} & & A_{\text{sedgebtmmin}} = 0.0013 \times 1.0 \times b_{\text{w}} \times h_{\text{edge}} = \textbf{325 mm}^2 \\ & \text{Area of steel required;} & & A_{\text{sedgebtmreq}} = \text{max}(A_{\text{sedgebtmbend}}, A_{\text{sedgebtmmin}}) = \textbf{325} \end{aligned}$

 mm^2

PASS - $A_{sedgebtmreq} \leftarrow A_{sedgebtm}$ - Area of reinforcement provided in bottom of edge beams is adequate

Edge beam shear check

Applied shear stress; $v_{\text{edge}} = V_{\text{\Sigmaedge}} / (b_{\text{W}} \times d_{\text{edgetop}}) = \textbf{0.244 N/mm}^2$ Tension steel ratio; $\rho_{\text{edge}} = 100 \times A_{\text{sedgetop}} / (b_{\text{W}} \times d_{\text{edgetop}}) = \textbf{0.356}$

From BS8110-1:1997 - Table 3.8

Design concrete shear strength; $v_{cedge} = 0.524 \text{ N/mm}^2$

 $v_{\text{edge}} \le v_{\text{cedge}} + 0.4 \text{N/mm}^2$ - Therefore minimum links required

Link area to spacing ratio required; $A_{sv_upon_s_{vregedge}} = 0.4 \text{N/mm}^2 \times b_w/((1.0/\gamma_s) \times f_{vs}) =$

0.460 mm

Link area to spacing ratio provided; $A_{sv_upon_s_{vprovedge}} = N_{edgelink} \times \pi \times \phi_{edgelink}^2 / (4 \times s_{vedge})$

= **0.524** mm

 $PASS - A_{sv_upon_s_{vreqedge}} <= A_{sv_upon_s_{vprovedge}} - Shear reinforcement provided in edge beams$ is adequate

Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, <u>costas@sachpazis.info</u>

Project: Raft Foundation Analysis & Design, In accordance with BS8110: Part 1-1997 and the recommended values.					o Ref.
Section Civil & Geotechnical Engineering				Sheet no./rev. 1	
Calc. by Dr. C. Sachpazis	Date 23/02/2014	Chk'd by	Date	App'd by	Date

Corner design checks

Basic loading

Corner load number 1

Load type; Line load in x direction $w_{Dcomer1} = 9.6 \text{ kN/m}$ Dead load; Live load; $W_{Lcorner1} = 0.0 \text{ kN/m}$

Ultimate load; $w_{ultcorner1} = 1.4 \times w_{Dcorner1} + 1.6 \times w_{Lcorner1} = 13.4$

kN/m

Centroid of load from outside face of raft; $y_{corner1} = 100 \text{ mm}$

Corner load number 2

Line load in y direction Load type; Dead load; $w_{Dcorner2} = 9.6 \text{ kN/m}$ Live load; $w_{Lcorner2} = 0.0 \text{ kN/m}$

Ultimate load; $W_{ultcorner2} = 1.4 \times W_{Dcorner2} + 1.6 \times W_{Lcorner2} = 13.4$

kN/m

Centroid of load from outside face of raft; $x_{corner2} = 100 \text{ mm}$

Corner bearing pressure check

Total uniform load at formation level; $W_{udlcorner} = W_{Dudl} + W_{Ludl} + W_{edge} / b_{bearing} + W_{hcorethick} = 21.0$

kN/m²

Net bearing press avail to resist line/point loads; $q_{netcorner} = q_{allow} - w_{udlcorner} = 54.0 \text{ kN/m}^2$

Total line/point loads

Total unfactored line load in x direction; $w_{\Sigma linex} = 9.6 \text{ kN/m}$ $W_{\Sigma ultlinex}$ =13.4 kN/m Total ultimate line load in x direction; Total unfactored line load in y direction; $w_{\Sigma liney}$ = 9.6 kN/m $w_{\Sigma ultliney}$ = 13.4 kN/m Total ultimate line load in y direction; Total unfactored point load; $w_{\Sigma point} = 0.0 \text{ kN}$ $w_{\Sigma ultpoint} = 0.0 \text{ kN}$ Total ultimate point load;

Length of side of sq reqd to resist line/point loads; pcorner = $[W_{\Sigma linex} + W_{\Sigma liney} + \sqrt{((W_{\Sigma linex} + W_{\Sigma liney})^2 + 4 \times q_{netcorner} \times W_{\Sigma point})}]/(2 \times q_{netcorner})$

 $p_{corner} = 356 \text{ mm}$

Bending moment about x-axis due to load/reaction eccentricity

Moment due to load 1 (x line); M_{x1} = max(0 kNm, $w_{ultcorner1} \times p_{corner} \times (p_{corner}/2 - p_{corner})$

 $v_{corner1}$)) = **0.4** kNm

Total moment about x axis; $M_{5x} = 0.4 \text{ kNm}$

Bending moment about y-axis due to load/reaction eccentricity

Moment due to load 2 (y line); M_{y2} = max(0 kNm, $w_{ultcorner2} \times p_{corner} \times (p_{corner}/2 -$

 $x_{corner2})) = 0.4 \text{ kNm}$

Total moment about y axis; $M_{\Sigma y}$ = **0.4** kNm

Check top reinforcement in edge beams for load/reaction eccentric moment

Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures.

Tel.: (+30) 210 5238127, 210 5711263 - Fax: +30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7859399944, costse@sechapats.info

Project: Raft Foundation Analysis & Design, In accordance with BS8110: Part 1-1997 and the recommended values.			Job) Ref.	
Section Civil & Geotechnical Engineering				Sheet no./rev. 1	
Calc. by Dr. C. Sachpazis	Date 23/02/2014	Chk'd by	Date	App'd by	Date

Max moment due to load/reaction eccentricity;

 $M_{\Sigma} = \max(M_{\Sigma x}, M_{\Sigma y}) = 0.4 \text{ kNm}$

Assume all of this moment is resisted by edge beam From edge beam design checks away from corners

Moment due to edge beam spanning depression; $M_{\Sigma edge} = 42.6 \text{ kNm}$

Total moment to be resisted; $M_{\Sigma comerbp} = M_{\Sigma} + M_{\Sigma edge} = 42.9 \text{ kNm}$

Width of section in compression zone; b_{edgetop} = b_{edge} = **500** mm

K factor; $K_{comerbp} = M_{\Sigma comerbp} / (f_{cu} \times b_{edgetop} \times d_{edgetop}^2) = 0.011$

Lever arm; $z_{comerbp} = d_{edgetop} \times min(0.95, 0.5 + \sqrt{0.25} - \frac{1}{2})$

 $K_{cornerbp}/0.9)) = 429 \text{ mm}$

Total area of top steel required; $A_{\text{scornerbp}} = M_{\text{\Sigma cornerbp}} / ((1.0/\gamma_s) \times f_y \times Z_{\text{cornerbp}}) = 230$

 mm^2

PASS - A_{scornerbp} <= A_{sedgetop} - Area of reinforcement provided to resist eccentric moment is adequate

The allowable bearing pressure at the corner will not be exceeded

Corner beam bending check

Cantilever span of edge beam; $I_{comer} = \phi_{depthick}/\sqrt{(2) + d_{edgetop}/2} = 2630 \text{ mm}$

Moment and shear due to self weight

Ultimate self weight udl; $w_{edgeult} = 1.4 \times w_{edge} = 8.4 \text{ kN/m}$

Average ultimate slab udl (approx); $W_{cornerslab} = max(0 \text{ kN/m}, 1.4 \times W_{slab} \times (\phi_{deothick}/(\sqrt{2}) \times 2) - (\phi_{deothick}/(\phi_{deothick$

 $b_{edge})) = 5.9 \text{ kN/m}$

Self weight and slab bending moment; $M_{cornersw} = (w_{edgeult} + w_{cornerslab}) \times I_{corner}^2/2 = 49.5$

kNm

Self weight and slab shear force; $V_{comersw} = (W_{edgeult} + W_{cornerslab}) \times I_{corner} = 37.6 \text{ kN}$

Moment and shear due to udls

Maximum ultimate udl; $W_{comerudl} = ((1.4 \times W_{Dudl}) + (1.6 \times W_{Ludl})) \times \phi_{depthick} / \sqrt{(2)} = (1.4 \times W_{Dudl}) + (1.6 \times W_{Ludl}) \times \phi_{depthick} / \sqrt{(2)} = (1.4 \times W_{Dudl}) + (1.6 \times W_{Ludl}) \times \phi_{depthick} / \sqrt{(2)} = (1.4 \times W_{Dudl}) + (1.6 \times W_{Ludl}) \times \phi_{depthick} / \sqrt{(2)} = (1.4 \times W_{Dudl}) + (1.6 \times W_{Ludl}) \times \phi_{depthick} / \sqrt{(2)} = (1.4 \times W_{Dudl}) + (1.6 \times W_{Ludl}) \times \phi_{depthick} / \sqrt{(2)} = (1.4 \times W_{Dudl}) + (1.6 \times W_{Ludl}) \times \phi_{depthick} / \sqrt{(2)} = (1.4 \times W_{Dudl}) + (1.6 \times W_{Dudl}) \times \phi_{depthick} / \sqrt{(2)} = (1.4 \times W_{Dudl}) + (1.6 \times W_{Dudl}) \times \phi_{depthick} / \sqrt{(2)} = (1.4 \times W_{Dudl}) \times \phi_{depthi$

26.0 kN/m

Bending moment; $M_{cornerudl} = w_{cornerudl} \times I_{corner}^2/6 = 29.9 \text{ kNm}$ Shear force; $V_{cornerudl} = w_{cornerudl} \times I_{corner}/2 = 34.1 \text{ kN}$

Moment and shear due to line loads in x direction

Bending moment; $M_{comerlinex} = w_{\Sigma ultlinex} \times I_{comer}^2/2 = 46.5 \text{ kNm}$ Shear force; $V_{comerlinex} = w_{\Sigma ultlinex} \times I_{comer} = 35.3 \text{ kN}$

Moment and shear due to line loads in y direction

Bending moment; $M_{comerliney} = w_{\Sigma ultliney} \times I_{corner}^2/2 = 46.5 \text{ kNm}$ Shear force; $V_{comerliney} = w_{\Sigma ultliney} \times I_{corner} = 35.3 \text{ kN}$

Total moments and shears due to point loads

Bending moment about x axis; $M_{cornerpointx} = 0.0 \text{ kNm}$ Bending moment about y axis; $M_{cornerpointy} = 0.0 \text{ kNm}$ Shear force; $V_{cornerpoint} = 0.0 \text{ kN}$

Resultant moments and shears

Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Ews.:30 210 5711461 - Mobile: (+30) 6736425722 & (+44) 7585939944, costss@sachpazis.info

	Project: Raft Foun with BS8110 : Pa	Job Ref.					
:	Civ	Sheet no./rev. 1					
n	Calc. by Dr. C. Sachpazis	Date 23/02/2014	Chk'd by	Date	App'd by	Date	

 $M_{\Sigma comerx} = M_{cornersw} + M_{cornerudl} + M_{cornerliney} +$

 $M_{\Sigma cornery} = M_{cornersw} + M_{cornerudl} + M_{cornerlinex} +$

 $V_{\Sigma cornerx} = V_{cornersw} + V_{cornerudl} + V_{cornerlinev} + V_{cornerpoint}$

 $V_{\Sigma cornery} = V_{cornersw} + V_{cornerudl} + V_{cornerlinex} + V_{cornerpoint}$

Total moment about x axis;

M_{cornerpointx} = 125.9 kNm

Total shear force about x axis;

= 107.1 kN

Total moment about y axis;

M_{cornerpointy} = 125.9 kNm

Total shear force about y axis;

= 107.1 kN

Deflection of both edge beams at corner will be the same therefore design for average of these

moments and shears

Design bending moment; $M_{\Sigma comer} = (M_{\Sigma comerx} + M_{\Sigma cornery})/2 = 125.9 \text{ kNm}$ Design shear force; $V_{\Sigma corner} = (V_{\Sigma comerx} + V_{\Sigma cornery})/2 = 107.1 \text{ kN}$

Reinforcement required in top of edge beam

K factor; $K_{comer} = M_{\Sigma corner}/(f_{cu} \times b_{edgetop} \times d_{edgetop}^2) = 0.031$

Lever arm; $z_{corner} = d_{edgetop} \times min(0.95, 0.5 + \sqrt{0.25} - \frac{1}{2})$

 $K_{corner}/0.9)) = 429 \text{ mm}$

Area of steel required for bending; $A_{\text{scomerbend}} = M_{\text{\Sigma}\text{comer}}/((1.0/\gamma_{\text{s}}) \times f_{\text{y}} \times z_{\text{comer}}) = 674$

 mm^2

Minimum area of steel required; $A_{\text{scornemin}} = A_{\text{sedgetopmin}} = 325 \text{ mm}^2$

Area of steel required; $A_{\text{scorner}} = \max(A_{\text{scorner}}, A_{\text{scorner}}) = 674 \text{ mm}^2$

PASS - A_{scorner} <= A_{sedgetop} - Area of reinforcement provided in top of edge beams at corners is adequate

Corner beam shear check

Average web width; $b_w = b_{edge} = 500 \text{ mm}$

Applied shear stress; $v_{corner} = V_{\Sigma corner}/(b_w \times d_{edgetop}) = \mathbf{0.474} \text{ N/mm}^2$ Tension steel ratio; $\rho_{corner} = 100 \times A_{sedgetop}/(b_w \times d_{edgetop}) = \mathbf{0.356}$

From BS8110-1:1997 - Table 3.8

Design concrete shear strength; $v_{ccorner} = 0.508 \text{ N/mm}^2$

 $v_{corner} \le v_{ccorner} + 0.4 N/mm^2$ - Therefore minimum links required

Link area to spacing ratio required; $A_{sv_upon_s_{vreqcomer}} = 0.4 \text{N/mm}^2 \times b_w/((1.0/\gamma_s) \times f_{vs})$

= **0.460** mm

Link area to spacing ratio provided; $A_{sv_upon_s_{vprovedge}} = N_{edgelink} \times \pi \times \phi_{edgelink}^2 / (4 \times s_{vedge})$

= **0.524** mm

 $PASS - A_{sv_upon_s_{vreqcorner}} <= A_{sv_upon_s_{vprovedge}} - Shear reinforcement provided in edge beams$ at corners is adequate

Corner beam deflection check

Basic allowable span to depth ratio; Ratio_{basiccorner} = **7.0**

Moment factor; $M_{factorcorner} = M_{\Sigma corner} / (b_{eddetop} \times d_{eddetop}^2) = 1.232$

N/mm²

Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures.

Tel.: (+30) 210 5238127, 210 5711263 - Fax:-30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Project: Raft Foun with BS8110 : Pa	Job	Ref.			
Section Civil & Geotechnical Engineering					no./rev. 1
Calc. by Dr. C. Sachpazis	Date 23/02/2014	Chk'd by	Date	App'd by	Date

Steel service stress;

 $f_{scorner}$ = 2/3 × f_y × $A_{scornerbend}$ / $A_{sedgetop}$ = 279.448

N/mm²

Modification factor;

 $MF_{corner} = min(2.0, 0.55 + [(477 N/mm^2 - 10.00 M/m^2 + 10.00 M/m^2 - 10.00 M/m^2$

 $f_{scorner})/(120\times(0.9N/mm^2+M_{factorcomer}))])$

 $MF_{corner} = 1.322$

Modified allowable span to depth ratio; Ratio_{allowcorner} = Ratio_{basiccorner} × MF_{corner} = 9.255

Actual span to depth ratio; Ratio_{actualcomer} = I_{corner} / $d_{edgetop}$ = **5.819**

PASS - Ratio_{actualcorner} <= Ratio_{allowcorner} - Edge beam span to depth ratio is adequate